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ABSTRACT: The performance of version 4 of the NOAA High-Resolution Rapid Refresh (HRRR) numerical weather
prediction model for near-surface variables, including wind, humidity, temperature, surface latent and sensible fluxes, and
longwave and shortwave radiative fluxes, is examined over the Atmospheric Radiation Measurement (ARM) Southern
Great Plains (SGP) region. The study evaluated the model’s bias and bias-corrected mean absolute error relative to the ob-
servations on different time scales. Forecasts of near-surface geophysical variables at five SGP sites (HRRR at 3-km scale)
were found to agree well with observations, but some consistent observation–forecast differences also occurred. Sensible
and latent heat fluxes are the most challenging variables to be reproduced. The diurnal cycle is the main temporal scale af-
fecting observation–forecast differences of the near-surface variables, and almost all of the variables showed different
biases throughout the diurnal cycle. Results show that the overestimation of downward shortwave and the underestimation
of downward longwave radiative flux are the two major biases found in this study. The timing and magnitude of downward
longwave flux, wind speed, and sensible and latent heat fluxes are also different with contributions from model representa-
tions, data assimilation limitations, and differences in scales between HRRR and SGP sites. The positive bias in downward
shortwave and negative bias in longwave radiation suggests that the model is underestimating cloud fraction in the study
domain. The study concludes by showing a brief comparison with version 3 of the HRRR and shows that version 4 has bet-
ter performance in almost all near-surface variables.

SIGNIFICANCE STATEMENT: A correct representation of the near-surface variables is important for numerical
weather prediction models. This study investigates the capability of the latest NOAA High-Resolution Rapid Refresh
(HRRRv4) model in simulating the near-surface variables by comparing against the Atmospheric Radiation Measure-
ment (ARM) Southern Great Plains (SGP) in situ observations. Among others, we find that the surface heat fluxes,
such as sensible and latent heat fluxes, are the most difficult variables to be reproduced. This study also shows that the
diurnal cycle has the dominant impact on the model’s performance, which means the majority of the outputted near-
surface variables have the strong diurnal cycle in their bias errors.
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1. Introduction

Weather information is a key component of environmental
situational awareness, and the 3-km High-Resolution Rapid
Refresh (HRRR) model provides a critical component of
NOAA’s suite of weather guidance models focusing on situa-
tional awareness and short-range forecasting (Benjamin et al.
2016). Version 1 of the HRRR (HRRRv1) was implemented at
the National Centers for Environmental Prediction (NCEP) in
September 2014. Development has continued, with advances
in both model configuration (e.g., physics parameterizations,
diffusion) and data assimilation over the years, resulting in im-
proved models, with HRRRv2 being implemented at NCEP

in August 2016, HRRRv3 in July 2018, and HRRRv4 in
December 2020. Before the implementation of HRRRv4, the
modeling system had been run in test mode since August 2019,
providing over 15 months of data for analysis and comparison
with HRRRv3. A full description of the HRRR, including back-
ground on the different versions, is provided by Dowell et al.
(2022, hereinafter D22).

There are several published studies evaluating the perfor-
mance of different versions of the HRRR, but many of them
focused on the precipitation forecast (e.g., Yue and Gebremichael
2020; Bytheway et al. 2017; Cai and Dumais 2015; Gowan et al.
2018; Ikeda et al. 2017; Duda and Turner 2021; English et al.
2021). For example, Yue and Gebremichael (2020) evaluated the
accuracy of short-range forecasts from the HRRRv2 model for
five extreme storms in the United States. The study concluded
that the HRRRv2 model provides relatively reliable forecasts, but
the forecasts were mostly biased, overestimating rainfall in hurri-
canes but underestimating precipitation during tropical storms
that move into the center of the country. Gowan et al. (2018)
evaluated the cool-season precipitation of HRRRv2 over the
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western United States by comparing it against Snowpack
Telemetry (SNOTEL) observations and Parameter-Elevation
Regressions on Independent Slopes Model (PRISM) analyses.
They found that the HRRRv2 can adequately simulate oro-
graphic precipitation with good performance compared with
other mesoscale models. English et al. (2021) demonstrated that
HRRRv4 was able to accurately predict precipitation over cen-
tral California in atmospheric river events, although there is a
slight underestimate in the Central Valley and overestimate in
the Sierra Nevada. Cai and Dumais (2015) evaluated the experi-
mental version of the HRRR model’s precipitation forecasts
during the summer of 2010 over the eastern two-thirds of the
contiguous United States. It was found that the HRRR model
was able to forecast convective storm characteristics rather well,
either as a function of time of day or as a function of storm size,
although the model tended to underestimate the total number
and total area of convective storms. Ikeda et al. (2017) exam-
ined the HRRRv2 model’s ability to forecast the surface precip-
itation phase and concluded that the HRRRv2 model was able
to represent the overall vertical thermodynamic structure in the
mixed-phase precipitation regions. So far, only a few studies
have examined other near-surface variables (e.g., Lee et al.
2019; Fovell and Gallagher 2020, 2022; Wagner et al. 2019). For
example, Lee et al. (2019) evaluated the HRRRv2 model’s ca-
pability in simulating the near-surface meteorological fields and
surface energy balance at two locations in northern Alabama.
They found that the HRRRv2 model accurately simulated the
observations of near-surface air and dewpoint temperature, but
the model did not simulate well the observed sensible, latent,
and ground heat fluxes. Wagner et al. (2019) used temperature
and humidity profiles retrieved from the Atmospheric Emitted
Radiance Interferometer (AERI; Turner and Blumberg 2019)
radiance measurements to calculate convective available poten-
tial energy (CAPE) and compared these values with output
from the HRRRv2. They showed that HRRRv2 diurnal distri-
bution of CAPE lagged by 2 to 4 h compared with the AERI
observations. James et al. (2022, hereinafter J22) performed a
more comprehensive evaluation of the HRRR model (versions
1–4) using Meteorological Aerodrome Report (METAR) sur-
face observations, radar, and surface radiation data over the
CONUS domain.

These parameterizations for land surface, surface layer, and
planetary boundary layer schemes have been continuously im-
proved over the lifetime of the HRRR model development
(e.g., Smirnova et al. 2016; Olson et al. 2019a; Angevine et al.
2020; D22). This study will comprehensively evaluate the per-
formance of HRRRv4 in simulating 10-m wind, 2-m air temper-
ature and humidity, surface radiation, and surface turbulent
heat fluxes for a particularly well-observed substate area in
north-central Oklahoma. This study will also make comparisons
of HRRRv4 and HRRRv3. The goal of this work is to provide
guidance for further improving the HRRRv4’s capability in
simulating near-surface variables. In contrast to J22, the pur-
poses of this study are to 1) present a detailed evaluation of
HRRR performance in simulating near-surface variables over a
particularly well-observed region in Oklahoma using in situ ob-
servations; 2) reveal features of model performance over the
southern Great Plains (SGP) region that could be obscured by

averaging over large areas; and 3) quantify the forecast per-
formance of HRRRv4 over different time scales. The SGP
region was identified as one of the regions with strong land–
atmosphere coupling (Koster et al. 2004), and we hope this
study provides useful information on the sensitivities and
feedback mechanisms for studying land–atmosphere inter-
actions using HRRRv4.

2. Data and method

a. Data

1) ARM SGP

The SGP atmospheric observatory was the first field mea-
surement site established by the Atmospheric Radiation Mea-
surement (ARM) program (Turner and Ellingson 2016). The
SGP observatory consists of in situ and remote sensing instru-
ment clusters (e.g., Sisterson et al. 2016; Yang et al. 2006).
Unique aspects at the SGP observatory are the multiple loca-
tions where temperature, humidity, wind, and turbulence pro-
files are observed, as well as both collocated and distributed
surface energy-budget stations. Land cover of these sites and
their surrounding areas is given in Fig. 1. In the HRRR model,
the vegetation type of these grids with sites is croplands or
grasslands. Measurements from the E13 (collocated with the
Central Facility, which is southeast of Lamont, Oklahoma),
E32, E37, E39, and E41 (Fig. 1) are used for the analysis in this
work. These stations cover a 70-km (north–south) by 80-km
(east–west) area.

The measurements of the following variables of the SGP
sites are used in this study: 2-m air temperature (Temp), 2-m
water vapor mixing ratio (WVMR), 10-m wind speed (Wspd),
surface sensible heat flux (Sflux), surface latent heat flux
(Lflux), surface upward longwave radiation (LWup), surface
downward longwave radiation (LWdn), surface upward short-
wave radiation (SWup), and surface downward shortwave ra-
diation (SWdn). Among these variables, 2-m air temperature
and 10-m wind speed are from the surface meteorological sys-
tems (https://doi.org/10.5439/1025220), sensible heat flux and
latent heat fluxes are from the energy balance Bowen ratio
(https://doi.org/10.5439/1023895, at site E32) and the eddy
correlation flux measurement systems (https://doi.org/10.5439/
1097546, at sites E13, E37, E39, and E41), the shortwave and
longwave radiative fluxes are from solar infrared radiation
stations (https://doi.org/10.5439/1025277), and the water vapor
mixing ratio is derived from the measurements of the surface
meteorology systems. The observed data of the ARM obser-
vatory can be downloaded from its official site (https://www.
arm.gov/). Because of a system issue in the observations, la-
tent heat flux measurements from October 2019 to June 2020
are not usable at these sites.

2) HRRR FORECAST MODEL

The HRRR is an operational 3-km-resolution weather pre-
diction system and is an hourly updated, cloud-resolving,
convection-allowing atmospheric model (Benjamin et al.
2016; D22) with hourly data assimilation. It has been running
operationally at NOAA/NWS/NCEP since 2014. The HRRR
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has been undergoing continuous improvements, which are de-
scribed online (https://rapidrefresh.noaa.gov/hrrr/).

HRRRv4 is the latest version (as of this writing) and became
operational at NCEP in December 2020. As part of the evalua-
tion process used by the NWS, the HRRRv4 code was run in an
operational-like manner within the NOAAGlobal Systems Lab-
oratory from August 2019 to December 2020. The processes and
fluxes near the surface treated in the HRRR are represented in
Fig. 1 in Smirnova et al. (2000). HRRRv4 is the primary version
assessed in this study, but its predecessor, HRRRv3, was also
used for comparison. HRRRv4 uses the Rapid Update Cycle
(RUC) land surfacemodel (LSM) (Smirnova et al. 2016; He et al.
2021, see their Table A1 for more details) for computing
surface fluxes. It also uses the Mellor–Yamada–Nakanishi–Niino
(MYNN) eddy-diffusivity/mass-flux (EDMF) scheme (Olson
et al. 2019a, 2021) for computing turbulent exchanges of mois-
ture, heat, and momentum in the atmosphere. HRRRv4 com-
putes the subgrid-scale cloud properties via MYNN-EDMF,
which is coupled with the Rapid Radiative Transfer Model for
GCMs (RRTMG, Iacono et al. 2008) for computing shortwave
and longwave radiation. HRRRv4 uses MODIS albedo climatol-
ogy and the real-time VIIRS greenness fraction. HRRRv4 also
introduced a detailed treatment of larger and small lakes to im-
prove lake–atmosphere fluxes (Benjamin et al. 2022b). One of
the key features of HRRRv4 is that its representation of both
stratiform and convective subgrid-scale boundary layer clouds
has been improved (Olson et al. 2019b; D22), and the previous
large positive bias of incoming shortwave radiation has been re-
duced. This led to the improvements of HRRRv4 over the
CONUS domain in general (J22), and here we examine the im-
pacts of these improvements over the smaller SGP domain. The
forecast lead times of HRRRv4 range from 1 to 48 h. Hourly
data assimilation to initialize the HRRR includes use of surface
METAR, aircraft, WSR-88D, and satellite and ceilometer cloud
data (D22; Benjamin et al. 2016, 2021). HRRR data assimilation

also extends to soil temperature and moisture (Benjamin et al.
2022a).

In HRRRv4, 10-m wind speed is a diagnosed variable cal-
culated from the wind speed at the middle of the first model
layer using a neutral-log interpolation (Olson et al. 2021). The
2-m temperature (water vapor mixing ratio) is also a diag-
nosed variable interpolated from the surface potential tem-
perature (surface mixing ratio) and the potential temperature
(mixing ratio) at the first model level weighting by ratio of the
thermal (moisture) resistances (Olson et al. 2021). The sur-
face latent heat flux is calculated from the total evapotranspi-
ration, and the sensible heat flux is calculated using the heat
transfer coefficient from the MYNN surface-layer scheme and
the temperature difference between the first model level and
the skin level (Smirnova et al. 2016). The surface heat fluxes
are estimated in the RUC LSM.

In this study, we have used HRRR output data from a
15-month period fromAugust 2019 to October 2020 for evalu-
ating the model’s performance. In the analysis, our investiga-
tion mainly uses the 6-h forecast from the HRRRv4 for
comparison with the observations from the five ARM SGP
sites. The forecasts from 1 to 48 h were used in studying the ef-
fects of lead times on the model’s performance. HRRR output
variables are instantaneous, valid at a specific 20-s time step,
and without any temporal smoothing.

b. Method to compare model with observations

In this study, we use bias error and the bias-corrected mean
absolute error (BCMAE) of these variables to characterize
the performance of the model. They are calculated as

bias 5
1
n
∑
n

j51
(xf ,j 2 xo,j) and (1)

BCMAE 5
1
n
∑
n

j51
|xf ,j 2 xo,j 2 bias|, (2)

FIG. 1. The five ARM SGP sites of the study domain (stars). The solid black lines represent el-
evation (above sea level) contours (m), and land cover is from the National Land Cover Data-
base (NLCD; Homer et al. 2015).
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where xo,j is the jth observed value, xf,j is the jth forecast
value, and n is the number of pairs in the comparison. The
BCMAE is particularly useful to evaluate the improvement of
model skill; while it is easy to change a bias within a model, it
is hard to reduce the BCMAE without improving the model’s
ability to represent the physical evolution of the atmosphere
(e.g., Turner et al. 2004). For the comparison between the
models and the observations, data from the model grid cells
around the observations were obtained at hourly resolution
and then interpolated using a bilinear method.

Using these two statistical metrics, we evaluated the per-
formance of HRRRv4 against observations in multiple
ways, including 1) monthly performance of HRRRv4 over
the 15-month time period, 2) total performance of HRRRv4
in the cold (December 2019–February 2020) and warm
(June–August 2020) seasons, 3) diurnal performance of HRRRv4
in the same cold and warm seasons, and 4) performance of the
HRRRv4 as a function of forecast lead time in the warm season.
We also compared the performance of HRRRv3 and HRRRv4
in the cold and warm seasons, respectively, to investigate the
changes in performance between the two model versions.

3. Results

As shown in Fig. 1, we used data from five ARM sites in the
SGP domain. The soil properties are either loam, silt loam, or
clay loam, and the primary land use is either croplands or
grasslands. An analysis (not shown) demonstrates that the
near-surface variables predicted by the HRRR are generally
consistent across these five sites; thus, we have combined the
data from the five locations to improve the sampling in the
subsequent statistics. However, a brief discussion on the varia-
tion of the model’s performance among these five sites is given
in the online supplemental material for readers interested in
this topic.

a. Monthly performance

Near-surface variables can have a strong annual cycle. To study
the monthly variation of the model’s performance, monthly statis-
tical metrics of the 15-month (August 2019–October 2020) 6-h
forecasts were calculated. As near-surface variables are heavily
impacted by the diurnal cycle, daytime and nighttime statistical
metrics were calculated separately. Also, to avoid the morning
and afternoon transition effects, daytime and nighttime metrics
were computed from 1000 to 1500 and from 2200 to 0300 local
time (LT; i.e., central daylight time), respectively. Since the
model’s performance over these five sites is largely consistent,
the samemetrics for each variable at the five sites were combined
and only their mean and variation (one sigma) were presented.
Figure 2 shows bias errors separated by day and night of the dif-
ferent months for the eight variables; Fig. 3 shows the same, but
for the BCMAEs of these variables.

The monthly bias errors (Fig. 2) of different variables show
that almost all variables have variations over different months,
and the bias errors were generally larger in the daytime than in
the nighttime. The 2-m air temperature was overestimated by
about 1 K for all months in the nighttime, underestimated in
the daytime over September, October, and November of the
15 months, but close to zero for other months (more results
about the diurnal variation are in the later section) (Fig. 2a). For
both nighttime and daytime, HRRRv4 underestimated 2-m wa-
ter vapor mixing ratio during the warm months (Fig. 2b, close to
zero for othermonths) and also underestimated upward (Fig. 2c)
and downward (Fig. 2d) longwave radiation during most of this
analysis period, which was especially pronounced in the daytime.
The model always overestimated downward shortwave radia-
tion (Fig. 2e). The bias errors of sensible and latent heat fluxes
had the opposite signs (Figs. 2g,h). When the sensible heat flux
was underestimated in the daytime in August, September, and
October 2019, latent heat flux was overestimated, and when the

FIG. 2. Monthly daytime (1000–1500 LT; orange) and nighttime (2200–0300 LT; blue) bias of the eight different variables between the 6-h
HRRRv4 forecasts and observed variables.
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sensible heat flux was overestimated after March 2020, latent
heat flux was underestimated. This is consistent with the dry
daytime bias of 2-m water vapor mixing ratio for this period
(Fig. 2b). The 10-m wind speed was slightly underestimated
during the daytime and slightly overestimated during the night-
time (Fig. 2f).

Figure 3 shows the BCMAEs of these variables, again for
HRRRv4 6-h forecasts. BCMAE values between the daytime
and nighttime periods for 2-m air temperature (Fig. 3a) and
downward longwave radiation (Fig. 3d) are consistent over the
15-month period. However, there are relatively large BCMAE
values during the daytime of warm months for 2-m water vapor
mixing ratio (Fig. 3b), upwelling longwave radiation (Fig. 3c),
and 10-m wind speed (Fig. 3f). The daytime BCMAE values
were markedly higher for latent (Fig. 3h) and sensible (Fig. 3g)
heat fluxes; however, this is not surprising since nighttime val-
ues for those geophysical variables are generally quite small.
From the observed cloud fractions, we roughly calculated the
number of clear-skies days in each month shown by the dash
line in Fig. 3e. We found that BCMAE of the downward short-
wave radiation is highly negatively correlated with the number
of clear skies in that month. If a month had more clear-skies
days, the BCMAE of the downward shortwave radiation in
that month was smaller. This indicates that the simulated
downward shortwave radiation in HRRRv4 can be improved
through improving the representation of clouds in the model.

b. Diurnal cycle

To study the effects of the diurnal cycles on HRRRv4’s
performance, we compared the simulated variables against
observations at every hour over the 24-h period, using 6-h
forecasts of the cold (1 December 2019–29 February 2020)
and warm (1 June–31 August 2020) seasons. Similar to
Figs. 2 and 3, the same metrics of each variable from all

five ARM-SGP sites near to each other in Oklahoma (Fig. 1)
are combined.

As expected, strong diurnal variation is evident in both the bias
(Fig. 4) and BCMAE (Fig. 5) for most variables. A positive 2-m
temperature bias during afternoon and evening (1200–0300 LT) is
evident in the warm season but not in the cold season (Fig. 4a).
The dry bias of the 2-m water vapor mixing ratio is very large
(nearly 2.5 g kg21) in the daytime of the warm season (Fig. 4b);
however, the 2-m water vapor is virtually bias free over the entire
diurnal cycle in the cold season. The bias error of downward
shortwave radiation is smaller than its BCMAE (Figs. 4e and 5e),
implying that even though the downward shortwave flux is over-
estimated most of the time (in both the cold and warm seasons),
there were times when it was underestimated. However, the
bias error in the sensible heat flux is larger than its BCMAE
in the warm season (Figs. 4g and 5g), suggesting that, gener-
ally speaking, the model is producing too much sensible heat
flux at the surface. This is consistent with the warm/dry biases
(Figs. 4a,b). Since the latent heat flux was always underesti-
mated in the warm season (Fig. 4h), this contributes to the
negative bias in the 2-m water vapor mixing ratio, and this
may also lead to the underestimation of cloud and overesti-
mation of downward shortwave radiation. The BCMAEs of
sensible and latent heat fluxes are similar to the magnitude of
the BCMAE in downward shortwave radiation, even though
the typical magnitudes of sensible and latent heat fluxes are
smaller than shortwave radiation. Last, the negative bias in
the downwelling longwave flux (Fig. 4d) does not correlate
well with the bias in the 2-m air temperature, suggesting that
bias in air temperature is not the source of this bias in long-
wave radiation in both the warm and cold seasons.

c. Forecast lead time

Forecast skill generally decreases with the forecast lead
time. The HRRR produces 48-h forecasts at four initialization

FIG. 3. As in Fig. 2, but for the BCMAE. In (e), the number of observed clear-skies days for each month is indicated by the dashed
line (using the right y axis).
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times (0000, 0600, 1200, and 1800 UTC); for other initializa-
tion times, the forecasts are limited to 21 h. To avoid the mix-
ing of the diurnal and annual cycle effects and the forecast
lead time effects, metrics were calculated separately for every
hour of the four-initialization time up to 48-h forecasts for the
warm season (1 June–31 August 2020). The biases for the
eight geophysical variables by lead time are shown in Fig. 6,
and the BCMAE in Fig. 7. For example, the blue curve in

Fig. 6 shows the bias errors of all forecasts initialized at
0000 UTC during the warm season as a function of fore-
cast lead time, while all forecasts initialized at 0600, 1200,
and 1800 UTC are given by the brown, green, and red
curves, respectively.

As expected from the previous section, Fig. 6 shows strong
variation from the diurnal cycle in bias errors for most of the
eight near-surface variables, and the impact of the diurnal

FIG. 4. Hourly bias errors of eight variables between the 6-h HRRR forecasts and observed values over the cold season
(December 2019–February 2020; blue) and warm season (June–August 2020; orange). Gray shading marks the local nighttime.

FIG. 5. As in Fig. 4, but for BCMAEs.
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cycle was often larger than the influence of forecast lead time.
Three variables in particular show an accumulating bias error
with forecast lead time in the warm season}2-m temperature
(Fig. 6a), 2-m water vapor mixing ratio (Fig. 6b), and downw-
elling shortwave radiation (Fig. 6e), meaning that data assimi-
lation improves the forecasts of these variables. Meanwhile,
Fig. 6 shows that the bias errors of some of the variables only
slightly increased with lead time (e.g., upwelling and downwel-
ling longwave radiation fluxes, 10-m wind speed, sensible and
latent heat fluxes) during the 48-h forecasts. By comparing
bias errors of a same time from the different initializations, we
can see that the model initialization generally improves accu-
racy of the simulation at short lead times (i.e., less than 3 h),
especially for 2-m air temperature (Fig. 6a), 2-m water vapor
mixing ratio (Fig. 6b), and downward shortwave radiation
(Fig. 6e). However, the diurnal cycle effect on the bias error
may still exist and is not totally eliminated through data assim-
ilation, such as for 2-m air temperature (Fig. 6a).

However, the BCMAE gives a different perspective on skill
in local variations relative to the overall bias and suggests that
the model error does grow with forecast lead time for all varia-
bles (Fig. 7). This is consistent with the common assumption

that forecast error increases with the increase of forecast length.
Among these variables, the upwelling longwave flux (Fig. 7c),
downwelling shortwave radiation (Fig. 7e), sensible heat flux
(Fig. 7g), and latent heat flux Fig. 7h) showed the least sensitiv-
ity to forecast lead time, as seen by the very similar magnitude
of the BCMAE at fixed times over the diurnal cycle (e.g., hours
6, 30, and 54). The increase of BCMAE in 10-m wind speed
with lead time is different from the findings from Pichugina et al.
(2019), which stated that the error between measured and mod-
eled wind speed did not degrade significantly with forecast lead
time. The difference may be caused by comparing wind speed
errors at different levels: this study uses 10-m wind speed, while
Pichugina et al. (2019) used 100-m wind speed. Also, the to-
pographic features of these two studies are different since
the SGP domain is in the relatively flat Great Plains area,
while the study domain in Pichugina et al. (2019) was in
more complex terrain.

d. Differences between HRRRv4 and HRRRv3

The HRRR development team gets input from a range of
forecast users about shortcomings of an operational model and
tries to address them via updates to the data assimilation and

FIG. 6. Bias errors for HRRRv4 of eight variables and their variations for a warm season (1 Jun–31 Aug 2020) with
forecast duration starting at 0000 UTC, for the four different initialization times of 0000, 0600, 1200, and 1800 UTC
(blue, orange, green, and red, respectively). Gray areas represent nighttime periods, and the thick black vertical lines
represent local noon (1200 LT).
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physics parameterizations in newer versions. The approach gen-
erally taken is outlined in Turner et al. (2020) and involves for-
mulating hypotheses about the shortcoming and testing the
impacts of designed changes (to the model parameterizations
or data assimilation scheme) against observations such as the
radiosondes launched by the NWS, METAR observations at
the surface, radar reflectivity from the WSR-88Ds, precipitation
derived from these same observations, etc. The ARM SGP ob-
servations provide a complementary way to evaluate the model
differences, especially since surface turbulent fluxes are not op-
erationally available across the nation.

The diurnal bias errors of HRRRv3 and HRRRv4 for the
cold and warm seasons are presented in Fig. 8. The data from
HRRR3 and HRRRv4 are “matched” (e.g., see Turner et al.
2020); if one dataset has missed a value at a time, the value of
the same time from another dataset would also be removed.

The results showed that the warm bias of the 2-m air temper-
ature in late afternoon of the cold season was corrected from
HRRRv3 to HRRRv4, and the warm bias of the warm season
was also corrected, especially in the morning hours. A similar
daytime warm bias in the cold season for HRRRv3 was largely
eliminated. This correction could come from the improvement
of the SWdn from better representing subgrid clouds in
HRRRv4 (see section 2b and Table 4 in D22). The high SWdn
bias in the cold season was decreased dramatically (Fig. 8e);

however, the bias reduction is smaller in the warm season. J22
showed a 60% reduction in excessive downward shortwave
bias when averaged across seasons and using radiation meas-
urements at a dozen sites across the United States. A lower
daytime warm bias from HRRRv4 for 2-m air temperature
agreed with the decrease of the high bias in the sensible heat
flux (Fig. 8g). On the contrary, the dry bias errors of the 2-m
water vapor mixing ratio (Fig. 8b) for the warm season are
even larger in HRRRv4. J22 also noted this result, likely re-
lated to very short-range (0–1 h) low precipitation bias in
HRRRv4 (see Figs. 4a, 12b, and 13b and section 2b in J22)
and its data assimilation changes (an area to be addressed in
the future per Fig. 3 in D22). The bias errors of downward and
upward longwave radiation (Figs. 8c and 8d, respectively)
were a little bit larger in HRRRv4 than in HRRRv3. The in-
crease of the dry bias in the 2-m water vapor mixing ratio in
HRRRv4 during the warm season was consistent with the in-
crease of the low bias increment of latent heat flux (Fig. 8h). It
is also possible that the increased daytime 2-m dry bias in
HRRRv4 contributed to the continued deficit in cloud cover
in HRRRv4.

However, the BCMAE, which provides a better measure of
the model’s ability to predict variability in a geophysical vari-
able, was either close or reduced in HRRRRv4 in all eight geo-
physical variables for most times over the diurnal cycle in both

FIG. 7. As in Fig. 6, but for BCMAEs.
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the warm and cold seasons. The decreases in the BCMAE from
HRRRv4 (relative to HRRRv3) are especially notable in the
daytime 2-m temperature in both seasons (Fig. 9a), the warm-
season 2-m water vapor (Fig. 9b), the warm-season upwelling
longwave radiation (Fig. 9c), the warm-season downwelling
shortwave radiation (Fig. 9e), and the daytime warm-season
sensible and latent heat fluxes (Figs. 9g and 9h, respectively).
This “across the board” improvement in the BCMAE demon-
strates the superiority of HRRRv4, although the still significant
magnitudes of the BCMAE and the bias in these variables indi-
cate that more improvement to the model physics and data as-
similation are certainly needed.

4. Discussion

In this section, we contrast when (by season and time of
day) HRRRv4 forecasts agree closely with SGP observations
and when the differences are larger to obtain insights on
model design and data assimilation in HRRRv4.

First, we address the continued daytime warm bias in 2-m
temperature in HRRRv4 during the warm season (Fig. 8a),
slightly cooler than HRRRv3 but still positive. The main
components of the surface energy budget to consider here
are the downward radiative fluxes and the soil moisture driven
by the ongoing cycle of 0–1-h precipitation forecasts (D22).

FIG. 8. Hourly bias errors of eight variables between the 6-h HRRR forecasts and observed values over cold season
(December 2019–February 2020; blue for HRRRv4 and green for HRRRv3) and warm season (June–August 2020; orange for HRRRv4 and
red for HRRRv3) for HRRRv3 (dashed lines) and HRRRv4 (solid lines). Gray shading marks the nighttime period.

FIG. 9. As in Fig. 8, but for BCMAEs.
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HRRRv4 has reduced the excessive downward shortwave bias
(vs HRRRv3) over Oklahoma by about 25% (Fig. 8e) in the
warm season and by about 50%–60% over the year using 14 ra-
diation stations across the United States (Fig. 9 in J22). At the
same time, a 2-m moisture dry bias in the warm season, espe-
cially during daytime, became more pronounced with HRRRv4
(Fig. 8b) (Fig. 12 in J22). We attribute this to reduced 0–1-h pre-
cipitation in HRRRv4 from data assimilation changes, resulting
in a subsaturation bias that led to a dry soil moisture bias (see
Fig. 4a and section 2b in J22, and the end of section 2d in D22).
This precipitation deficit in the 0–1-h forecast is critical for the
evolution of the HRRR soil moisture (Benjamin et al. 2022a).
This attribution is also consistent with the lower bias in the latent
heat flux (Fig. 8h), with the lower soil moisture biases due to
less precipitation. It is possible that this daytime dry bias con-
tributed to still-deficient daytime clouds inHRRRv4. As shown
in section 3, the agreement with SGP observations generally im-
proved with HRRRv4 compared with HRRRv3, so our remain-
ing discussion below is in the context of improved downward
solar radiation with HRRRv4 but with drier soil conditions due
to the change in the data assimilation implemented inHRRRv4.

Air temperature, water vapor, and cloud properties (i.e.,
height, optical depth, and thermodynamic phase) all affect the
simulation of the downward longwave radiation. A high bias
of air temperature can result in an increase in the downward
longwave radiation. In HRRRv4, the high bias trend of 2-m
air temperature in the warm season is similar to the low bias
trend of downward longwave radiation to some extent. This
means that a high bias of 2-m air temperature did lead to a
less low bias of downward longwave radiation. A low bias in
2-m water vapor mixing ratio could result in fewer clouds and
thus, less downward longwave radiation, and this is consistent
with our results. This means that the dry bias of 2-m water va-
por mixing ratio dominated the low bias of downward long-
wave radiation. However, the diurnal low bias of downward
longwave radiation in the warm season (Fig. 8d) is not in the
same trend as the diurnal bias in 2-m water vapor mixing ra-
tio. We hypothesize that the model is underestimating cloud
longwave radiative flux (e.g., either with a low bias in cloud
fraction or optical depth, or by placing the cloud too high),
which results in an underestimation of downward longwave
radiation. The first two (i.e., low bias in cloud fraction or
cloud optical depth) are consistent with the overestimation of
downward shortwave radiation. By comparing observations
from GOES-13, Griffin et al. (2017) also showed that the
HRRRv3 forecasts contained fewer cloud objects than were
observed. From comparisons of HRRRv3 and HRRRv4 in
this study (e.g., Fig. 8e), the cloud fraction in HRRRv4 was im-
proved but still is underestimated.

Downward shortwave radiation is the geophysical variable
still overestimated in HRRRv4 despite significant improvement
from HRRRv3. Clouds are the main factor that affects the simu-
lation of solar radiation, and too few clouds (e.g., an underesti-
mate of cloud fraction or cloud optical depth) leads to a positive
bias in the downward solar radiation. Since the model over-
estimates shortwave radiation, we conclude that its cloud
fraction was also underestimated. This is consistent with the
underestimation of downward longwave radiation. Another

fact supporting the clouds-related issue is that BCMAE for
downward shortwave radiation was much smaller in months
with clearer-skies days than months with fewer clear-sky
days (Fig. 3e). It is still possible that the deficit of clouds is
forced by the daytime warm-season 2-m warm and dry bias,
which may, in turn, be a consequence of a dry soil bias from
the 0–1-h precipitation deficiency related to the HRRRv4
data assimilation.

The monthly and hourly bias errors of 10-m wind speed showed
that the model underestimated winds by about 0.2 m s21 during
daytime throughout the year, although there is some spatial vari-
ability in the results as the 10-m wind speed bias errors of the five
sites are scattered (not shown). This slight underestimation of
daytime 10-m wind speed is consistent with the surface verification
of Fovell and Gallagher (2020) and Pichugina et al. (2019).

Sensible and latent heat fluxes are a challenge to simulate, as
they are impacted by many factors both within the land surface
and the atmosphere. The large daytime warm-season flux biases
are consistent with the 2-m warm and dry bias. We also note
the challenge in comparing the HRRR against surface flux ob-
servations from representativeness of flux observations, which
have relatively small footprints (of order 10 s of m) compared
with the 3-km grid cell, as mentioned earlier in this paper.
Many studies have shown that measuring surface fluxes can be
difficult (e.g., LeMone et al. 2019), and their spatial heterogene-
ities are also strong (e.g., Tang et al. 2019).

In our study, we found some consistency with Lee et al.
(2019), but there are different findings as well. From the cold-
season diurnal cycle statistics, it was found that the HRRRv4
slightly underestimated 2-m air temperature during the daytime
and overestimated it during the nighttime. However, Lee et al.
(2019) reported the opposite finding for their cold-season study
using HRRRv2, which was conducted in northern Alabama.
Both studies showed that the surface fluxes from the HRRR
had large differences with the observations, although here, we
show lower errors in HRRRv4 (Figs. 8g,h and 9g,h). Also, in
HRRRv4, the EDMF approach and subgrid cloud parameteri-
zation are included to improve the representation of nonlocal
mixing and shortwave radiation.

By investigating the model error as a function of forecast lead
time, this study found that the bias errors in the forecast of the
near-surface variables largely depend on the diurnal cycle of the
surface variables themselves, which is the same as findings from
Zhang et al. (2013). Yue and Gebremichael (2020) also showed
that the effect of lead times was not obvious as there was no sys-
tematic difference in accuracy among the 2–18-h lead-time pre-
cipitation forecasts. However, the BCMAE statistics (Fig. 7)
demonstrate that the forecast errors in all variables do have an
upward trend with forecast lead time, although some variables
(e.g., upwelling longwave, latent flux, and sensible flux) have rel-
atively small changes in BCMAE over the forecast time.

5. Conclusions

The simulated HRRRv4 near-surface geophysical variables,
including wind, humidity, temperature, surface latent and sen-
sible fluxes, and longwave and shortwave radiative fluxes,
were compared against ARM SGP observations in this study
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using statistical metrics including bias and bias-corrected
mean absolute error (BCMAE). From these systematic com-
parisons across different time scales and leading times, we
have some conclusions about the performance of HRRRv4
over the SGP domain in Oklahoma.

The differences between HRRRv4 forecasts and SGP obser-
vations in Oklahoma were small for many variables and seasons,
but for surface heat fluxes were sometimes larger in warm sea-
sons (e.g., cold bias in fall and dry bias in summer) and in the
daytime when sensible and latent heat fluxes had larger values.
The monthly results of hourly comparisons showed that the
model’s performance was relatively stable over the 15 months,
and daytime and nighttime biases were different. However,
some of the variables showed seasonal variations, such as the
2-m water vapor mixing ratio. The results also showed that
nighttime 2-m air temperature was overestimated over the
15 months, and daytime 2-m air temperature was slightly under-
estimated in the fall months of the 15 months.

The hourly results of the warm and cold seasons further dem-
onstrated that diurnal cycle has, as expected, a large impact on
the bias of the simulated near-surface variables. The 2-m air
temperature has a warm bias during late afternoon in the warm
season and a slight cold bias during late afternoon in the cold
season. The low bias of downward longwave radiation was
larger during the daytime than the nighttime in the warm season,
but the low bias was relatively constant during the cold season.

The monthly and hourly results showed that HRRRv4 has a
2-m dry bias in the warm season, and additional improvements in
simulating the surface heat fluxes are required to match the in situ
observations. Also, the model’s performance in simulating the ra-
diative and surface heat fluxes implies that the representation of
clouds needs to be improved in the model. Since this study only
investigated some of the near-surface variables, we cannot specifi-
cally identify which cloud properties have deviations.

The impact of the forecast lead time on themodel’s performance
shows the diurnal cycle is the dominant factor in controlling fore-
cast error, although the bias-corrected mean absolute error showed
the upward trend over the increase in lead time. The results also
demonstrated that data assimilation does improve HRRR’s perfor-
mance on most of the variables, but not all of the variables.

Comparisons were also made between forecasts from
HRRRv3 and HRRRv4 and the SGP observations, showing a
general improvement from HRRRv4 for these boundary layer
variables. Almost all variables were improved in the cold sea-
son, and the same was true for the warm season except for 2-m
water vapor. Reasons for these improvements were described
in the paper, including improvements in HRRRv4 model phys-
ics but also with reduced short-range precipitation in HRRRv4
from data assimilation changes described by J22. Overall, the
HRRRv4 compared with HRRRv3 performance shown here
was largely consistent with the differences with national-scale
verification also shown by J22. The results of this paper will
guide new developments in model physics and data assimilation
for NOAA convection-allowing scale modeling.

Acknowledgments. The authors thank Dr. Ryann Wake-
field of NOAA Global Systems Laboratory for an insightful

review of this paper. Support for this analysis was provided
via Grant 89243019SSC000034 provided by the DOE Atmo-
spheric System Research (ASR) program and by the NOAA
Atmospheric Science for Renewable Energy (ASRE) pro-
gram. Tatiana G. Smirnova and Siwei He are supported by
NOAA Cooperative Agreement NA22OAR4320151.

Data availability statement. The in situ observed data of
the five sites around the SGP domain are downloaded from
the ARM web page (https://www.arm.gov/). The HRRRv3
and HRRRv4 data are available through Amazon Web Serv-
ices (https://registry.opendata.aws/noaa-hrrr-pds/).

REFERENCES

Angevine, W. M., J. Olson, J. J. Gristey, I. Glenn, G. Feingold,
and D. D. Turner, 2020: Scale awareness, resolved circula-
tions, and practical limits in the MYNN–EDMF boundary
layer and shallow cumulus scheme. Mon. Wea. Rev., 148,
4629–4639, https://doi.org/10.1175/MWR-D-20-0066.1.

Benjamin, S. G., and Coauthors, 2016: A North American hourly
assimilation and model forecast cycle: The Rapid Refresh.
Mon. Wea. Rev., 144, 1669–1694, https://doi.org/10.1175/
MWR-D-15-0242.1.

}}, and Coauthors, 2021: Stratiform cloud-hydrometeor assimila-
tion for HRRR and RAP model short-range weather predic-
tion. Mon. Wea. Rev., 149, 2673–2694, https://doi.org/10.1175/
MWR-D-20-0319.1.

}}, T. G. Smirnova, E. P. James, L.-F. Lin, M. Hu, D. D. Turner,
and S. He, 2022a: Land–snow assimilation including a moder-
ately coupled initialization method applied to NWP. J. Hydro-
meteor., 23, 825–845, https://doi.org/10.1175/JHM-D-21-0198.1.

}}, and Coauthors, 2022b: Inland lake temperature initialization
via coupled cycling with atmospheric data assimilation. Geo-
sci. Model Dev., 15, 6659–6676, https://doi.org/10.5194/gmd-
15-6659-2022.

Bytheway, J. L., C. D. Kummerow, and C. Alexander, 2017: A
features-based assessment of the evolution of warm season
precipitation forecasts from the HRRR model over three
years of development. Wea. Forecasting, 32, 1841–1856,
https://doi.org/10.1175/WAF-D-17-0050.1.

Cai, H., and R. E. Dumais Jr., 2015: Object-based evaluation of a
numerical weather prediction model’s performance through
forecast storm characteristic analysis. Wea. Forecasting, 30,
1451–1468, https://doi.org/10.1175/WAF-D-15-0008.1.

Dowell, D. C., and Coauthors, 2022: The High-Resolution Rapid
Refresh (HRRR): An hourly updating convection-allowing
forecast model. Part I: Motivation and system description.Wea.
Forecasting, 37, 1371–1395, https://doi.org/10.1175/WAF-D-21-
0151.1.

Duda, J. D., and D. D. Turner, 2021: Large-sample application of
radar reflectivity object-based verification to evaluate HRRR
warm-season forecasts. Wea. Forecasting, 36, 805–821, https://
doi.org/10.1175/WAF-D-20-0203.1.

English, J. M., D. D. Turner, T. I. Alcott, W. R. Moninger, J. L.
Bytheway, R. Cifelli, and M. Marquis, 2021: Evaluating opera-
tional and experimental HRRR model forecasts of atmospheric
river events in California. Wea. Forecasting, 36, 1925–1944,
https://doi.org/10.1175/WAF-D-21-0081.1.

Fovell, R. G., and A. Gallagher, 2020: Boundary layer and surface
verification of the High-Resolution Rapid Refresh, version 3.

H E E T A L . 779JUNE 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:14 PM UTC

https://www.arm.gov/
https://registry.opendata.aws/noaa-hrrr-pds/
https://doi.org/10.1175/MWR-D-20-0066.1
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/MWR-D-20-0319.1
https://doi.org/10.1175/MWR-D-20-0319.1
https://doi.org/10.1175/JHM-D-21-0198.1
https://doi.org/10.5194/gmd-15-6659-2022
https://doi.org/10.5194/gmd-15-6659-2022
https://doi.org/10.1175/WAF-D-17-0050.1
https://doi.org/10.1175/WAF-D-15-0008.1
https://doi.org/10.1175/WAF-D-21-0151.1
https://doi.org/10.1175/WAF-D-21-0151.1
https://doi.org/10.1175/WAF-D-20-0203.1
https://doi.org/10.1175/WAF-D-20-0203.1
https://doi.org/10.1175/WAF-D-21-0081.1


Wea. Forecasting, 35, 2255–2278, https://doi.org/10.1175/WAF-
D-20-0101.1.

}}, and }}, 2022: An evaluation of surface wind and gust fore-
casts from the High-Resolution Rapid Refresh.Wea. Forecast-
ing, 37, 1045–1068, https://doi.org/10.1175/WAF-D-21-0176.1.

Gowan, T. M., W. J. Steenburgh, and C. S. Schwartz, 2018: Valida-
tion of mountain precipitation forecasts from the convection-
permitting NCAR ensemble and operational forecast systems
over the western United States. Wea. Forecasting, 33, 739–765,
https://doi.org/10.1175/WAF-D-17-0144.1.

Griffin, S. M., J. A. Otkin, C. M. Rozoff, J. M. Sieglaff, L. M.
Cronce, C. R. Alexander, T. L. Jensen, and J. K. Wolff, 2017:
Seasonal analysis of cloud objects in the High-Resolution
Rapid Refresh (HRRR) model using object-based verifica-
tion. J. Appl. Meteor. Climatol., 56, 2317–2334, https://doi.org/
10.1175/JAMC-D-17-0004.1.

He, S., T.G. Smirnova, and S.G. Benjamin, 2021: Single-column val-
idation of a snow subgrid parameterization in theRapidUpdate
Cycle Land-Surface Model (RUC LSM). Water Resour. Res.,
57, e2021WR029955, https://doi.org/10.1029/2021WR029955.

Homer, C.G., and Coauthors, 2015: Completion of the 2011National
Land Cover Database for the conterminous United States}
Representing a decade of land cover change information.Photo-
gramm.Eng. Remote Sens., 81, 345–354.

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard,
S. A. Clough, and W. D. Collins, 2008: Radiative forcing by
long-lived greenhouse gases: Calculations with the AER radi-
ative transfer models. J. Geophys. Res., 113, D13103, https://
doi.org/10.1029/2008JD009944.

Ikeda, K., M. Steiner, and G. Thompson, 2017: Examination of
mixed-phase precipitation forecasts from the High-Resolution
Rapid Refresh model using surface observations and sound-
ing data. Wea. Forecasting, 32, 949–967, https://doi.org/10.
1175/WAF-D-16-0171.1.

James, E. P., and Coauthors, 2022: The High-Resolution Rapid
Refresh (HRRR): An hourly updating convection-allowing
forecast model. Part II: Forecast performance. Wea. Forecast-
ing, 37, 1397–1417, https://doi.org/10.1175/WAF-D-21-0130.1.

Koster, R. D., and Coauthors, 2004: Regions of strong coupling
between soil moisture and precipitation. Science, 305, 1138–
1140, https://doi.org/10.1126/science.1100217.

Lee, T. R., M. Buban, D. D. Turner, T. P. Meyers, and C. B.
Baker, 2019: Evaluation of the High-Resolution Rapid Refresh
(HRRR) model using near-surface meteorological and flux
observations from northern Alabama. Wea. Forecasting, 34,
635–663, https://doi.org/10.1175/WAF-D-18-0184.1.

LeMone, M. A., and Coauthors, 2019: 100 years of progress in bound-
ary layer meteorology. ACentury of Progress in Atmospheric and
Related Sciences: Celebrating the AmericanMeteorological Society
Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc.,
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0013.1.

Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES:
Description of weather and climate models and their near-
surface temperature errors in 5 day hindcasts near the south-
ern Great Plains. J. Geophys. Res. Atmos., 123, 2655–2683,
https://doi.org/10.1002/2017JD027199.

Olson, J. B., J. S. Kenyon, W. A. Angevine, J. M. Brown, M.
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